Showing posts with label numpy. Show all posts
Showing posts with label numpy. Show all posts

Thursday, 7 December 2017

Python Programming for Data Analytics: NumPy Library Basics

NumPy Library
NumPy is the core library for scientific computing in Python. It provides a high-performance multidimensional array object, and tools for working with these arrays.

Create 2-D array using numpy from list
import numpy as np
mylist=[[1,2,3],[4,5,6],[7,8,9]]
np.array(mylist)

Create 1-D and 2-D array using random values
np.random.rand(5)             #uniform distribution of random values
np.random.rand(4,4)          # create 2-D array of random values
np.random.randn(4)        #std. normal distribution, centered around 0

Fetch Max on Min value from array
arr1=np.random.randint(0,100,10)    #10 random integer elements
arr1.max()    or arr1.min()

Playing with the data using numpy library
arr=np.arange(0,11)                            #create array of 10 elements between 1—10
arr[:5]                                                 #fetch 1st 5 elements of array arr
arr[5:]                                                  #fetch elements from 5th positions till last elements
arr[:2]=100                                        # replace the 1st two elements of array with value 100
arr=np.arange(0,25)
arr.reshape(5,5)                                             #reshape method which reshapes 1-D array into 2-D array
arr_2d=np.array([[1,2,3],[4,5,6],[7,8,9]])     #create 2-D array
arr_2d[:2,1:]                                              # select elements in a particular row and column in 2D array
arr=np.arange(0,11)
arr > 5                                                        #return True for elements position which is more than 5
arr[arr<5]                        
# return True for elements position which is more than 5 and pick array values for True positions
arr+arr                                                       # element by element array addition
mat = np.arange(1,26).reshape(5,5)    #generate 1D array of 15 elements and convert it into 2D array
mat.std()                                     #finding standard deviation on elements

mat.sum(axis=0)                        #summing elements column wise in given array mat

Hope you had enjoyed working with these basics of NumPy library. in next post, I would come up with another popular library used in Data Analytics.

Happy Learning! Please post your comments below :-)