Matplotlib Tool
Matplotlib is a plotting library for the Python programming language
and its numerical mathematics extension NumPy. It provides an object-oriented API for embedding plots into applications
using general-purpose GUI toolkits like TKinter, wxPython, Qt, or GTK+.
Source: Wikipedia
Importing matplotlib and numpy to
plot line graph
import
matplotlib.pyplot as plt
%matplotlib inline
import
numpy as np
x =
np.linspace(0, 5, 11) #generate
1D array starting from 0—5, total 11 elements
y = x ** 2 # x2
plt.plot(x, y, 'r’) #
'r' is the color red
plt.xlabel('X Axis Title Here') #label x asis
plt.ylabel('Y Axis Title Here') # label y axis
plt.title('String Title Here') # give title to plot
plt.show() #
show plot
Create subplot in single plot (like
MATLAB)
plt.subplot(1,2,1) #
1 row, 2 columns, 1st figure in row
plt.plot(x, y, 'r--') #
r—red color, -- for dashed graph lines
plt.subplot(1,2,2) #
1 row, 2 columns, 2nd figure in row
plt.plot(y, x, 'g*-'); #
g—green color, *- for graph lines
Use subplot functions to create
MATLAB style line color
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
x = np.linspace(0, 5, 11)
fig, ax =
plt.subplots() #generate 2 objects, fig
and ax
ax.plot(x,
x**2, 'b.-') # blue line with dots
ax.plot(x, x**3,
'g--') # green dashed line
ax.set_xlabel('x axis’)
ax.set_ylabel('y axis')
ax.set_title(' plot title')
Plot various types of plots (scatter,
step, bar and fill) in same figure
import numpy
as np
import
matplotlib.pyplot as plt
%matplotlib
inline
n =
np.array([0,1,2,3,4,5])
xx =
np.linspace(-0.75, 1., 100)
fig, axes =
plt.subplots(1, 4, figsize=(12,3))
#create figure of dimension 12x3 inch, with 4 subplots
axes[0].scatter(xx,
xx + 0.25*np.random.randn(len(xx)))
axes[0].set_title("scatter")
axes[1].step(n,
n**2, lw=2) #lw=line
width of 2
axes[1].set_title("step")
axes[2].bar(n,
n**2, align="center", width=0.5, alpha=0.5) #alpha – transparency level
axes[2].set_title("bar")
axes[3].fill_between(xx,
xx**2, xx**3, color="green", alpha=0.5);
axes[3].set_title("fill_between");
Saving
plot into file format
fig.savefig("filename.png")
fig.savefig("filename.png",
dpi=200)
Hope you have enjoyed working with Matplotlib library and plotted beautiful graphs of your data :-)
In next post, I would come up with another popular and important library used for Data Analytics purpose.
Keep learning.Keep Growing :-) Please post your comments below !